
COMBINATORIAL MULTIOBJECTIVE OPTIMIZATION USING

GENETIC ALGORITHMS

Final Summary of Researc/z

conducted under NASA Cooperative Agreement NCC-1-01042

Uni,

William A. Crossley, Associate Professor

Eric T. Martin, Graduate Research Assistant

Purdue University
School of Aeronautics and Astronautics

315 N. Grant Street

West Lafayette, Indiana 49707-2023





COMBINATORIAL MULT1OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHMS

Final Summary of Research conducted under NASA Cooperative Agreenzent NCC-1-01042

Submitted by:

William A. Crossley, Associate Prof:ssor

Purdue University, School of Aeronautics and Astronautics

315 N. Grant Street, West Lafayette, IN 47907-2023

ABSTRACT

The research proposed in this document investigated multiobjective optimization approaches based upon the

Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this

research, there had not been significant comparisons of the most popalar strategies. The research effort first

generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch

GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic

algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used
in the conceptual phase of design to combine selection (discrete w_riable) and sizing (continuous variable) tasks.

Using a multiobjective formulation for the design of a 50-passenger air,-raft to meet the competing objectives of

minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that

illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short

trip-time aircraft design. Given the objective formulation and analysi., methods used, the results of this study

identify where turboprop-powered aircraft and turbofan-powered aircralt become more desirable for the 50-seat

passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective

optimization technique could be used to assist in the design of morphing aircraft.

RESEARCH DESCRIPTION

DEVELOPMENT OF THE N-BRANCH TOURNAMENT GA

The N-branch tournament GA is a generalization of the two-branch tournament, _ which was developed to solve

two-objective optimization problems. The N-branch tournament method uses the selection operator to perform

multiobjective design, rather than formulating a single fitness function like the more popular Multi-Objective

Genetic Algorithm (MOGA). With the N-branch approach, selection is organized so that designs compete once on

each fitness function. To accomplish this, the entire population is copied into a "pot", from which Nobj individuals

are randomly selected without replacement to compete on the first fitness function. The best performing individual

of these designs is added to the "'parent pool". The competition using the first fitness is repeated until the pot is

empty. At this point, the parent pool will be partially full, containing only the individuals that were selected based

upon the first fitness function. The pot is then refilled with the original population and the process is repeated for all

other objectives. After the final branch has been completed, the parent pool is full. A flowchart of this process for

two objectives appears in Fig. 1. The fitness functions require no user-defined scaling or weighting coefficients for

the multiple objectives, and each individual fitness function is evaluated inespective of other individuals.
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Fig. l. Flowchart of the N-branch tournament selection.

To solve constrained problems with a GA, fitness functions often use exterior penalty functions. The N-branch

tournament uses this idea with a slight modification to allow for objectives of different magnitudes. The first fitness

function,j_, is computed using Equation 1. Equation 2 then computes a penalty-scaling factor for subsequent fitness

functions. All other fitness functions are calculated with Equation 3. Using a penalty-scaling factor in this way

penalizes all objectives with the same percentage that penalized the first objective.

j=l k=l

P* = 1 +
(2)

f, = P*O, i = 2 ..... Noz,_ (3)

In a two-branch tournament, half of the parents survive based upon their performance in the first objective, and

half survive based on the second. If parent couples were chosen from the parent pool randomly without

replacement, half of the children (on average) will have parents selected based on different fitness functions, one

fourth will have parents both selected based upon j_, and one fourth will have parents both selected based upon f2.

For a three-branch tournament, two thirds of the children will have mixed-objective parents (on average), and only

one ninth of the children will have parents both selected based on any given fitness function. Because most of the

population will have parents that won tournaments on separate fitness functions, the compromise region of the

Pareto front will be favored with less emphasis on the "ends" where good performance on only one objective is
desired.

An improvement to the two-branch tournament that encourages designs at the ends of the Pareto front is the
parent-mixing factor. 2 This improvement was easily adapted to the N-branch tournament. The parent mixing factor,

_, determines what fraction of parents surviving each branch will crossover with parents surviving another branch.

If 0t = 0, there is no mixing, and parents surviving thefl branch will only mate with otherfl survivors. If ct = 1,fL

survivors mate only with survivors of other branches. Higher values of _ encourage compromise designs that are

good in all objectives; smaller values encourage good performance in only one objective near the ends of the Pareto

front. This study used the value ot = 1/9. This value was found to perform well in an empirical study during
development of the N-branch tournament. It should be noted that for all necessary parental pairings to occur,

population size must be a multiple of 2XNot,j I or. If ct = 1/9, then population size must be a multiple of 54 for a

three-objective problem.
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Onceparentsareselectedandpairedformating,uniformcrossoveris usedto generatechildren.Aftereach
generation,thesetof feasible non-inferior designs is stored as an approximation to the Pareto set. This stored set is

updated as new designs dominate previously stored designs.

COMPARISON TO MOGA

The Multi-Objective Genetic Algorithm (MOGA) is a Pareto-based method initially developed by Fonseca and

Fleming. 3 MOGA is quite popular, and several researchers have used if, is approach and / or developed their own

versions of this approach. (See for example, Refs. 4, and 5) MOGA generates selection pressure by replacing the

vector of objective functions with a single rank-based fitness function. The problem is then treated as a single

fitness minimization problem with the rank providing the single fitness value. Individuals in the population receive

a rank value based upon their degree of non-inferiority or non-dominance. Here, inferiority is evaluated only with

respect to the current population, so it is not necessary for an indivi¢_ual to be in the actual Pareto set to be
considered non-inferior. For a given population, the individuals that are aon-inferior are assigned the lowest (best)

rank and individuals that are highly dominated (dominated by many individuals) are assigned the highest (worst)

rank. A fitness value based on this rank is then assigned to each individual.

Kurapati, Azarm, and Wu 6 have developed improved constraint handling techniques for MOGA. The aim of

this approach is to improve MOGA's effectiveness and potentially reduce computational cost by evaluating

objectives and constraints separately. This version of MOGA was used lbr the investigations presented here. The

procedure is as follows:

Step i: Evaluate constraints for all individuals

Step 2: Assign a poor rank (0.95 x Npop) to infeasible individuals

Step 3: Assign a moderate rank (0.5 x Npop) to feasible individuals

Step 4: Evaluate objectives of feasible individuals

Step 5: Assign good rank (1) to feasible, non-inferior individuals

Step 6: Assign fitness values to all individuals based on their rank values with penalties based upon the degree
and number of constraint violations.

After each generation, the feasible, non-inferior designs are stored n an approximate Pareto set. This set is

updated as new designs are found that dominate previously stored designs; the new, non-dominated designs are

added and the now dominated designs are removed from the approximate _;et.

The MOGA approach and the N-branch tournament GA were used to solve several test problems to assess the

relative strengths and weaknesses of the two methods. For these comparisons there were two general problem types:

"highly constrained" and "adjacent minima". Significant detail of the test problems and more comprehensive

discussion of the results are presented in Ref. 7.

The test problems included simple quadratic functions that easily illm,trate both highly constrained and adjacent

minima problems, a multiobjective version of Golinski's speed reducer pr_)blem, and a combinatorial multiobjective

version of the ten-bar truss structural optimization benchmark problem. For the quadratic problems and Golinski's

speed reducer, all variables are continuous variables. The combinatorial ten-bar truss problem seeks to minimize the

weight of the truss, the maximum displacement of the truss and the cost of the truss. Because both the discrete

material type and continuous cross-sectional area of each truss element are treated as design variable, the ten-bar

truss lends itself well as a benchmark combinatorial multiobjective problem.

For this suite of test problems, which included continuous and combinatorial multiobjective optimization

problems, both approaches adequately provided an approximation to the Pareto front. This suggests that both

methods are effective tools for multiobjective optimization with three or more objectives. As with many aspects of

the GA, the choice for the best approach appears to be problem dependent.

The results of the simple constrained and 10-bar truss problems suggest that N-branch GA may be better suited

to solving highly constrained problems. For the simple constrained problem, N-branch GA found more designs near
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the constraint boundary than the MOGA. For the 10-bar truss problem, N-branch was able to find many more low-
weight designs, where the stress constraints are active, than the MOGA was able to find.

The results of the adjacent minima problem favor the MOGA approach. While the N-branch tournament

approach found more total non-dominated designs than the MOGA approach, the MOGA approach provides a much

better resolution of the true shape of the Pareto front. N-branch GA is unable to find designs in the middle portion

of the front. This is due to the selection mechanics of the N-branch tournament. Designs that perform well on one

of the adjacent minima will also perform well on the other adjacent minimum. Because these designs perform well

in two objectives, they are likely to be selected as parents twice as often as designs performing well on the

remaining, non-adjacent objective. For many engineering problems, it may not be known if two or more objectives
are adjacent a priori.

Golinski's speed reducer is both highly constrained and has two adjacent minima. It is not clear which

approach is preferred for this type of problem. The MOGA approach finds many more points on the Pareto front
than the N-branch GA. However, the N-branch GA finds better solutions near the extremes of the Pareto set where

constraints are active. If the aim is to find the broadest range of solutions, then the N-branch would be favored;

however, if the aim is to find a large number of solutions, then MOGA is favored.

MULTIOBJECTIVE DESIGN TO INVESTIGATE AIRCRAFT DESIGN

The two-branch version of the N-branch GA was used to generate solutions to an aircraft design problem posed
as a combinatorial multiobjective optimization problem This approach is envisioned for use at the onset of the

conceptual design phase, when an aircraft mission, requirements, and design objectives are being formulated and

engineering designers are seeking aircraft concepts that satisfy these needs. To help illustrate this approach for

aircraft conceptual design, a 50-seat commuter aircraft problem was developed. The well-known aircraft sizing
code, FLOPS, 8 provided predictions of aircraft performance, size and weight for this study. More detail about the

specific problem formulation and a more comprehensive discussion of the results can be found in Ref. 9

The 50-seat commuter aircraft problem can be posed as a multiobjective optimization problem. For this work,

the objectives were meant to reflect desires of the commuter airline and the aircraft's passengers, but must also be

measurable. Minimizing design gross weight is an objective, this traditional aircraft design objective serves as a

surrogate for aircraft acquisition cost. Reducing aircraft total trip time also provides an objective; this reflects a
passenger's desire.

Because FLOPS predicts the gross weight, size, and performance of an aircraft to complete a given design

mission, the range was not directly treated as a design objective. Rather, a fixed distance was used for the design

mission and one set of designs representing the tradeoff between low takeoff gross weight and low total trip time is
generated. By changing the design mission range and finding a new multiobjective solution set, the third objective

of maximizing design range can also be investigated, although this third objective is limited to discrete values of

range.

The design variables for the 50-seat commuter problem incorporate continuous sizing variables and discrete

selection variables that describe the layout and geometry of the aircraft. Two continuous variables describing the

design mission are also included. Discrete selection variables for the 50-seat aircraft include one variable describing

the number and placement of the engines, a second variable describing the number of seats abreast in the cabin, and

a third variable describing the tail arrangement.

Runs were conducted using design ranges of 500-nmi, 1,000-nmi, and 2,000-nmi. A design range of 1,000 nmi

is comparable to existing 50-seat commuter aircraft. The 500-nmi and 2,000-nmi ranges are half and twice the

standard 50-seat commuter aircraft design range. Superposing the 500-, 1000- and 2000-nmi range results onto one

plot allows examination of the effect of range. Figure 2 presents the results from all three ranges on one objective
space plot.
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Fig. 2. Superposed approximate Pareto fronts for all 50-seat commuter design mission ranges.

As the design mission range increases, the results show the expected increase in both takeoff gross weight and

trip time. For the longest design mission range (2000 nmi), the Pareto front for the turbofans appears to dominate

the front for the turboprops, while the shortest design mission range (500 nmi) shows that turboprop designs

dominate the turbofan designs for some portion of the front. Also, the distance between the two fronts associated

with the 2000 nmi range is much larger than either the 500- or 1000-nmi range results. This may be somewhat

intuitive, because the turbofan-powered aircraft will have the opportunity to climb to altitudes at which their

advantage in speed significantly impacts trip time and their best cruise Mach number provides for a lower fuel

weight.

Using a multiobjective genetic algorithm to investigate the conceptual design space for aircraft is an innovative

way to provide design engineers with information about important tradet)ffs between the various objectives under

consideration. In turn, the engineers can make better decisions about the _ircraft concept and size that best meets the

design team's interpretation of the design requirements.

A multiobjective GA generates a large number of candidate designs in only one run of the code, with little

computational effort. The GA can also consider a large number of design variables, allowing the GA to search a

large design space. Because a GA can combine continuous with integer and discrete design variables, engineers can

combine concept selection with aircraft sizing in the early stages of the design process, reducing the number of

subjective decisions required. The GA can also suggest good concepts without any initial input concept from the

design team.

For the 50-passenger commuter aircraft problem, it appears that the GA is able to generate reasonable results.

The resulting approximate Pareto optimal designs provide information about which design variables change to

provide the tradeoff between trip time and takeoff gross weight. The results generated here suggest that if trip time

and takeoff gross weight are the two objectives for this problem, for mosl of the design space the turbofan-powered

aircraft are better designs. The results also provide information to the designers about which design variables

change to provide the tradeoffs between trip time and takeoff gross weight, and which variables do not contribute to

this tradeoff. The information provided by this investigation of the desigl space exceeds that normally provided by

a traditional selection, then sizing approach that would normally result in one concept or a small number of

concepts.
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INVENTIONS

No inventions were developed as a result of this research.

BIBLIOGRAPHY

Publications resulting from this research are listed below.

Crossley, W. A., Martin, E. T., and Fanjoy, D. W., "A Multiobjective Investigation of 50-Seat Commuter Aircraft

Using a Genetic Algorithm," AIAA Paper 2001-5247, I s_AIAA Aircraft Technology, Integration, and Operations
Forum, Los Angeles, CA, Oct. 2001.

Martin, E. T., and Crossley, W. A., "Empirical Study of Selection Methods for Multiobjective Genetic Algorithm,"
AIAA Paper 2002-0177, 40 th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2002.

Martin, E. T., Hassan, R. A., and Crossley, W. A., "A Comparison of Multiobjective Genetic Algorithm Approaches
for N Objectives," AIAA-2002-5430, 9 th AIAAJISSMO Symposium on Multidisciplinary Analysis and

Optimization, Atlanta, GA, Sep. 2002. (Revised version in preparation for submittal to AIAA Journal.)


